
Computer Aided Geometric Design 25 (2008) 80–95

www.elsevier.com/locate/cagd

On the approximation order of tangent estimators

G. Albrecht a,∗, J.-P. Bécar b, G. Farin c, D. Hansford c

a ENSIAME-LAMAV/CGAO, Université de Valenciennes et du Hainaut–Cambrésis, Le Mont Houy, F-59313 Valenciennes Cedex 9, France
b IUT-LAMAV/CGAO, Université de Valenciennes et du Hainaut–Cambrésis, Le Mont Houy, F-59313 Valenciennes Cedex 9, France

c Department of Computer Science, Arizona State University, Tempe, AZ 85287-8809, USA

Received 2 February 2007; received in revised form 23 May 2007; accepted 24 May 2007

Available online 2 June 2007

Abstract

A classic problem in geometric modelling is curve interpolation to data points. Some of the existing interpolation schemes
only require point data, whereas others, require higher order information, such as tangents or curvature values, in the data points.
Since measured data usually lack this information, estimation of these quantities becomes necessary. Several tangent estimation
methods for planar data points exist, usually yielding different results for the same given point data. The present paper thoroughly
analyses some of these methods with respect to their approximation order. Among the considered methods are the classical schemes
FMILL, Bessel, and Akima as well as a recently presented conic precision tangent estimator. The approximation order for each of
the methods is theoretically derived by distinguishing purely convex point configurations and configurations with inflections. The
approximation orders vary between one and four for the different methods. Numerical examples illustrate the theoretical results.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

A classic problem in geometric modelling is curve interpolation to data points. Different interpolation schemes
exist, see, e.g., Farin (2001). Some of them only require the point data, whereas others, especially the piecewise
interpolation schemes, require higher order information, such as tangents or curvature values, in the data points. Since
measured data usually lack this information, estimation of these quantities becomes necessary.

This paper deals with the problem of estimating tangents in given planar data points. There exist different methods
for this purpose. We compare five schemes, that are popular in the CAGD area, first with respect to their practi-
cal performance, and then we thoroughly investigate their respective approximation orders. The considered tangent
estimators are FMILL’s method, Bessel’s and Akima’s method, see Farin (2001), as well as a circle based and a gen-
eral conic based method. Conic based tangent estimators are, e.g., used in Schaback (1993), Liming (1944), Pavlidis
(1983).

FMILL’s, Bessel’s and the circle based method take three consecutive points as input data, and the tangent is
estimated in the middle point. FMILL simply produces a line parallel to the one joining the first and the third point,
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Bessel takes the tangent to a parametric parabola interpolating the three points, and the circle based method uses
the tangent to the circle interpolating the three data points. Akima’s method and the conic based method take five
consecutive points estimating the tangent in the third point. As Bessel’s method also Akima’s method needs parameter
values in the data points to be estimated, and obtains the tangent vector by a certain weighted combination of the five
data points. The more recent conic based method (Albrecht et al., 2005) produces the tangent to the interpolating
conic of the given five points. It uses a simple algorithm that is based on a theorem from classical projective geometry,
so-called Pascal’s theorem, and thus necessitates very few computations to achieve this tangent with conic precision,
in contrast to computing the implicit conic.

Regarding the comparison of these five methods, experiments clearly illustrate a better performance of the conic
based method with respect to the other schemes showing a high suitability for applications in the area of convexity
preserving interpolation. We determine the approximation orders of all five considered tangent estimation methods,
and thus prove that for convex configurations the conic based method is of approximation order four, whereas the circle
based method has approximation order two, and FMILL’s, Bessel’s and Akima’s in general only have approximation
order one. In the case of inflection points we obtain slightly different results.

The paper is organized as follows. In Section 2 we first recall the different tangent estimation schemes (Sections 2.1
and 2.2), and then apply them to a set of sample curves comparing their performance (Section 2.3). Section 3 is
dedicated to a theoretical determination of the approximation orders of all involved methods (Section 3.1) followed by
numerical experiments illustrating the theoretical results (Section 3.2). Section 4 contains some concluding remarks.

2. Current tangent estimators

2.1. Classical methods: FMILL, Bessel, Akima, Circle

The most popular schemes for tangent estimation are FMILL, Bessel’s, and Akima’s method, see, e.g., Farin (2001),
as well as the tangent to the circle through three consecutive points.

FMILL’s method (also known as a Catmull–Rom spline (Catmull and Rom, 1974)) calculates a tangent vector
v ∈ R

2 in p3 as

v = p4 − p2. (1)

Bessel’s method calculates a tangent vector v ∈ R
2 in p3 to the interpolating parabola through the points p2,p3,p4

with corresponding parameter values τ2, τ3, τ4. This yields

v = 1 − α

�2
(p3 − p2) + α

�3
(p4 − p3), (2)

where �i = τi+1 − τi , α = �2
�2+�3

.

Akima’s method obtains a tangent vector v ∈ R
2 in p3 as follows by using the five points p1, . . . ,p5 with corre-

sponding parameter values τ1, . . . , τ5.

v = (1 − α)a2 + αa3, (3)

where ai = pi+1−pi

τi+1−τi
, α = ‖�a1‖‖�a1‖+‖�a3‖ , �ai = ai+1 − ai . Chord length parameterization of the data points was used

for the implementation of Bessel and Akima tangents. Further details on these schemes may be found in Farin (2001).
The tangent at p3 to the circle through the points p2(x2, y2), p3(0,0), p(x4, y4) has the normal

n =
(

x2
4y2 − x2

2y4 + y2y
2
4 − y2

2y4

x2
2x4 − x2

4x2 + x4y
2
2 − x2y

2
4

)
. (4)

2.2. Conic method

2.2.1. Geometric background
First, we give our nomenclature for geometric entities and operations on them. A point p̄ in projective space P

2 is
represented with lowercase letters and its corresponding affine point p in E

2 is given, respectively as

p̄ =
[

p0
p1

]
and p =

[
p1/p0
p2/p0

]
.

p2
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Points with p0 = 0 are called points at infinity. A line in projective space P
2 is represented with capital letters as

L̄ = [L0,L1,L2], where the coordinates are the coefficients for the implicit equation of the line L0 +L1x +L2y = 0.
Furthermore, we will use the notation that the line L̄ij is the join between the points p̄i and p̄j .

The principle of duality in projective geometry allows for the joining of points and the intersection of lines to be
achieved with a cross product. Thus the join between two points, L̄ = p̄∧ q̄, results in a line; Likewise, the intersection
of two lines, p̄ = L̄ ∧ M̄, results in a point. More information on projective geometry as it relates to Computer Aided
Geometric Design (CAGD) may be found in Farin (1999).

Theorem 1 (Pascal’s). Let p̄1, . . . , p̄6 be six distinct points on a non-degenerate conic section. Divide the points into
two ordered sets of three points, for example (p̄1, p̄5, p̄3) and (p̄4, p̄2, p̄6). Then, the intersection points

ā = L̄12 ∧ L̄54, b̄ = L̄56 ∧ L̄32, c̄ = L̄16 ∧ L̄34,

lie on a line called the Pascal line.

For an illustration see Fig. 1. Any partitioning of the points will result in a Pascal line, thus there are many such
lines.

For our tangent estimation scheme, we want to have p̄3 and p̄4 from above coalesce to one point. Now, re-label p̄5
as p̄4 and p̄6 as p̄5. Thus, according to Pascal’s theorem, the points

ā = L̄12 ∧ L̄34, b̄ = L̄54 ∧ L̄32, c̄ = L̄15 ∧ L̄33, (5)

are collinear, where L̄33 is the tangent at p̄3 (see, e.g., Pascal (1910, p. 236) or Chasles (1865, p .43). This is illustrated
in Fig. 2.

Fig. 1. Pascal’s theorem: points ā, b̄, c̄ are collinear.

Fig. 2. Tangent construction: tangent L̄33 at p̄3 is formed using a special application of Pascal’s theorem where two points have coalesced.
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Fig. 3. Degenerate configurations, where the algorithm (6) produces an invalid result: (a) the conic degenerates into a pair of intersecting lines,
where each of the lines contains 3 data points, the intersection point of the lines being a data point, (b) the conic degenerates into a pair of
intersecting lines, where one of the lines contains 4 data points, (c) the conic degenerates into a double line containing all five data points.

2.2.2. Algorithm
Based on the lines and points in (5), the tangent L̄33 at p̄3 is constructed as

L̄33 = p̄3 ∧ (
L̄15 ∧ (ā ∧ b̄)

)
. (6)

By appropriate relabeling, this algorithm may be adjusted to find the tangent at each of the five points.1

An alternative approach using cross ratios of lines is discussed in Albrecht et al. (2005).
If the underlying conic degenerates into a pair of intersecting lines or a double line, the algorithm fails to produce a

result in the configurations illustrated in Fig. 3, where p̄3 can be any of the five marked points. If the conic degenerates
into a pair of lines, where the intersection point of the lines is not a data point the algorithm correctly produces the
line containing the point p̄3 as estimated tangent.

2.3. Examples

We tested the above tangent estimation methods by measuring the angle ε in radians between the exact tangent and
the estimates on a set of sample curves.

A representative set of the curves tested, along with the points selected from them, are given in Table 1 and
illustrated in Fig. 4. Results from the tests, obtained with the computer algebra system MAPLE, are given in Table 2.

These examples clearly illustrate that for planar, convex data, the method with conic precision performs better than
the standard tangent estimation methods FMILL, Bessel’s, Akima’s and the circle method. For non-convex data all of
these methods may perform very badly as is illustrated in Fig. 5; here, the points are taken from a degree 4 polynomial
parametric curve and the interpolating hyperbola of the conic method, the interpolating parabola of Bessel’s method,

Table 1
Curves tested: the curve type, equation, and parameter values extracted are listed

Curve M(x(t), y(t)) (t1, t2, t3, t4, t5)

1: Polynomial
(
t, 1

5 (1 − (1 − t)5)
)

(0.1,0.2,0.3,0.5,0.8)

2: Witch of Agnesi
(
t, 1

1+t2

)
(−2,−1.9,−1.7,−1.5,−1)

3: Folium of Descartes
( 3t

1+t3 , 3t2

1+t3

)
(0.1,0.25,0.5,0.85,0.9)

4: Bicorn
(
sin t, cos2 t

2−cos t

) (
π
12 , π

8 , π
6 , π

5 ,0.9
)

5: Tear Drop curve
(
cos t, sin t. sin2(

t
2

))
(1.8,1.85,1.9,1.95,2.2 )

6: Exponential (t, exp t) (0.8,0.9,1,1.2,1.3)

1 In particular, for each of the points there are 4! ways—due to index permutations—of calculating the same tangent.
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Fig. 4. Test curves: five points were extracted from the curves above. The exact tangent is drawn, and the equations are given in the Table 1.

Table 2
Experimental results: refer to Table 1 for the curve associated with each number

Curve εFmill εBessel εAkima εcircle εconic

1 0.040533 0.014225 0.013154 0.014225 0.002506
2 0.002135 0.001854 0.001994 0.001854 0.000000
3 0.047800 0.128474 0.088137 0.128474 0.008326
4 0.012574 0.005917 0.009246 0.005917 0.001150
5 0.000492 0.001228 0.000860 0.001229 0.000000
6 0.017061 0.001753 0.007654 0.001754 0.000000

The angle ε in radians measures the difference between the exact tangent and the estimate.

the interpolating circle as well as Akima’s tangent are shown. All of the considered tangent estimators yield reasonable
results for convex data, while a remarkably better performance has been observed for the conic based method. This
method is thus suggested in the important application area of convexity preserving interpolation.

The number of computations in the conic based method is roughly ten times less than computing the conic directly
via a determinant as discussed in Farin (1999) in Eq. (4.26). Numerically, the results are equally as good as computing
the conic directly.

Numerical problems in the degenerate cases mentioned in Section 2.2.2 are avoided by upfront testing the data
for the configurations of Fig. 3 with respect to a prescribed tolerance. If with respect to the given tolerance such a
degenerate configuration is detected we propose FMILL’s method for determining the desired tangent in this case.

3. Approximation order

We now study the approximation order of the tangent estimators considered in Section 2.3 in order to explain their
different behavior found experimentally. To this end we consider a planar curve c, which in the neighborhood of a
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Fig. 5. Non-convex situation: erroneous tangents are obtained by the conic method (a) as tangent to the interpolating hyperbola at the middle point,
by Akima’s method (b), by Bessel’s method (c) as tangent to the interpolating parabola at the middle point, and by the circle based method (d) as
tangent to the interpolating circle at the middle point.

finite, regular point may be written in homogeneous form as

c: ȳ(t) =
( 1

t

f (t)

)
, (7)

where f is a sufficiently smooth function. We now take five points2

p̄i = ȳ(ti), i = 1, . . . ,5, (8)

from c. Without loss of generality we assume

t3 = 0 (9)

as well as

f (0) = f ′(0) = 0. (10)

3.1. Theoretical results

Under the above assumptions the asymptotic Taylor expansion of ȳ(t) then reads

ȳ(t) =
(1

0
0

)
+ t

(0
1
0

)
+

K∑
k=2

tk

k!

( 0
0
fk

)
+ O

(
tK+1), (11)

2 The parameter values are needed for the following theoretical analysis, but are not used for carrying out the practical algorithms presented
earlier.
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where fk = dkf

dtk
|t=0. The exact tangent of the curve c in p̄3 = ȳ(0), in its homogeneous line coordinates, is a non-zero

multiple of

ȳ(0) ∧ ȳ(1)(0) = (0,0,1)T , (12)

where ȳ(1)(0) = d ȳ
dt

|t=0. This is due to the following relation between a tangent vector v = (v1, v2)
T ∈ R

2 of a curve
in a curve’s point p ∈ E

2 in the inhomogeneous (affine) setting on the one hand and the homogeneous line coordinates
L̄ = (L0,L1,L2)

T of this tangent on the other hand:

L̄ =
⎛
⎝det(v,p)

v2
−v1

⎞
⎠ . (13)

In order to obtain the approximation orders of the different tangent estimators we now determine the Taylor expansion
of the calculated tangent in its homogeneous line coordinates for each of the considered methods, and, in the asymp-
totic situation3 ti → 0, (i �= 3), we compare the result to the exact tangent’s representation (12). The results of the
following sections have been obtained with the help of the computer algebra system MAPLE. We use the notation

t̄ = (0,0,1)T = ȳ(0) ∧ ȳ(1)(0), n̄ = (0,1,0)T .

3.1.1. Conic method
In order to obtain the Taylor expansion of the tangent L̄33 calculated by the conic method (6) we substitute the

Taylor expansion (11) for ȳ(ti), i = 1,2,4,5 into (6).
By introducing αij := αij (t1, t2, t4, t5), i = 1, . . . ,5, j = 1, . . . , i, standing for symmetric polynomials4 in the

variables t1, t2, t4, t5, containing exclusively terms of degree i, the first few terms in the Taylor expansion of L̄33 are
found to be the following:5,6

Degree 0:

−1

8
f 3

2 · t̄

Degree 1:

− 1

12
f 2

2 f3α11 · t̄

Degree 2:

− 1

288
f2

{
3f2f4α21 + 4f 2

3 α22
} · t̄

Degree 3:

− 1

4320

{
30f2f3f4α31 + 9f 2

2 f5α32 + 20f 3
3 α33

} · t̄

Degree 4:

− 1

17280

{
6f 2

2 f6α41 + 20f 2
3 f4α42 + 15f2f

2
4 α43 + 24f2f3f5α44

} · t̄

− 1

8640
f2

{
9f 2

2 f5 − 45f2f3f4 + 40f 3
3

} · t1t2t4t5 · n̄

3 This follows with h → 0, where h = maxi |ti − t3|.
4 The exact expressions for the αij may be obtained by contacting the authors or on the website http://www.univ-valenciennes.fr/lamav/ under

prepublications.
5 By considering t3 = 0.
6 The same result is of course obtained by calculating the tangent from the implicit equation of the conic through the five given points after

substitution of the Taylor expansions for f (ti ), i ∈ {1,2,4,5}.
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Degree 5:

− 1

120960

{
28f2f3f6α51 + 35f3f

2
4 α52 + 42f2f4f5α53 + 56f 2

3 f5α54 + 6f 2
2 f7α55

} · t̄

− 1

51840

{
9f 3

2 f6 − 45f 2
2 f 2

4 + 30f2f
2
3 f4 − 18f 2

2 f3f5 + 40f 4
3

} · t1t2t4t5 ·
(

5∑
i=1

ti

)
· n̄

For h := maxk∈{1,2,4,5} |tk| the asymptotic behavior of the αij = αij (t1, t2, t4, t5), may be expressed as follows:

αi,j (t1, t2, t4, t5) = O
(
hi

)
for h → 0.

We thus can formulate

Theorem 2. Let

c: ȳ(t) =
( 1

t

f (t)

)

be a sufficiently smooth planar curve in its homogeneous parameter form, where f (0) = f ′(0) = 0, and let t̄ =
(0,0,1)T respectively n̄ = (0,1,0)T denote the tangent respectively the normal of c in ȳ(0) in homogeneous line
coordinates. Let then p̄i = ȳ(ti), i = 1, . . . ,5 be five points on c where t3 = 0, thus p̄3 = ȳ(0), and let L̄33 be the line
calculated from these five points by algorithm (6).

If p̄3 is not an inflection point of c (f2 �= 0) it then holds (for h → 0):

L̄33 = O(1) · t̄ + O
(
h4) · n̄.

If p̄3 is an inflection point of c (f2 = 0, f3 �= 0) then we have (for h → 0):

L̄33 = O
(
h3) · t̄ + O

(
h5) · n̄.

In convex settings the tangent estimation algorithm (6) thus reproduces the desired tangent with approximation
order four, whereas in configurations with inflection points the approximation order reduces to two.

3.1.2. FMILL’s method
According to (1) the estimated tangent vector v ∈ R

2 of the curve c in p3 in its inhomogeneous representation
y(t) = (t, f (t))T is given by v = p4 − p2. Applying (13) this yields the homogeneous line coordinates of the desired
tangent as

L̄ =
⎛
⎝ 0

f (t4) − f (t2)

t2 − t4

⎞
⎠ . (14)

After division by the factor t2 − t4 the Taylor polynomial of L̄ thus reads:

t̄ −
(

m∑
k=2

(
k−1∑
j=0

t
j

4 t
k−1−j

2

)
fk

k!

)
· n̄.

Since for h := maxl∈{2,4} |tl | we have

k−1∑
j=0

t
j

4 t
k−1−j

2 = O
(
hk−1) for h → 0,

we thus obtain
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Theorem 3. Let

c: ȳ(t) =
( 1

t

f (t)

)

be a sufficiently smooth planar curve in its homogeneous parameter form, where f (0) = f ′(0) = 0, and let t̄ =
(0,0,1)T respectively n̄ = (0,1,0)T denote the tangent respectively the normal of c in ȳ(0) in homogeneous line
coordinates. Let then p̄i = ȳ(ti), i = 2,3,4 be three points on c where t3 = 0, thus p̄3 = ȳ(0), and let L̄ be the line
(14).

If p̄3 is not an inflection point of c (f2 �= 0) it then holds (for h → 0):

L̄ = O(1) · t̄ + O(h) · n̄.

If p̄3 is an inflection point of c (f2 = 0, f3 �= 0) then we have (for h → 0):

L̄ = O(1) · t̄ + O
(
h2) · n̄.

In the case of convex point configurations FMILL’s method thus approximates the desired tangent with approxi-
mation order one, whereas in an inflection point the approximation order becomes two.

3.1.3. Bessel’s method
According to (2) Bessel’s method obtains the desired tangent as tangent to the interpolating parabola x(τ ) ⊂ E

2 to
the points x(τi) = y(ti) = pi , i = 2,3,4. The parameter values τ2, τ3, τ4 have to be estimated, e.g., by chord length
parametrization. Whatever parameter estimator is used we may assume without loss of generality τ3 = 0. The tangent
vector v ∈ R

2 is thus calculated to be

v = τ 2
4

(
y(t2) − y(0)

) − τ 2
2

(
y(t4) − y(0)

)
.

Applying (13) thus yields the following homogeneous line coordinates for the desired tangent L̄.

L̄ =
⎛
⎝ 0

τ 2
4 f (t2) − τ 2

2 f (t4)

−τ 2
4 t2 + τ 2

2 t4

⎞
⎠ . (15)

The Taylor polynomial of L̄ thus reads

(
t4τ

2
2 − t2τ

2
4

) · t̄ −
{

m∑
k=2

[(
tk4 τ 2

2 − tk2 τ 2
4

)fk

k!
]}

· n̄.

Since for h := maxl∈{2,4} |tl | we have

tk4 τ 2
2 − tk2 τ 2

4 = O
(
hk

)
for h → 0,

we thus obtain

Theorem 4. Let

c: ȳ(t) =
( 1

t

f (t)

)

be a sufficiently smooth planar curve in its homogeneous parameter form, where f (0) = f ′(0) = 0, and let t̄ =
(0,0,1)T respectively n̄ = (0,1,0)T denote the tangent respectively the normal of c in ȳ(0) in homogeneous line
coordinates. Let then p̄i = ȳ(ti), i = 2,3,4 be three points on c where t3 = 0, thus p̄3 = ȳ(0), and let L̄ be the line
(2), obtained as tangent to the interpolating parabola x̄(τ ) to the three points p̄2, p̄3, p̄4.

If p̄3 is not an inflection point of c (f2 �= 0) it then holds (for h → 0):

L̄ = O(h) · t̄ + O
(
h2) · n̄.

If p̄3 is an inflection point of c (f2 = 0, f3 �= 0) then we have (for h → 0):

L̄ = O(h) · t̄ + O
(
h3) · n̄.
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The approximation order of Bessel’s method in general is thus one. Only in inflection points or in the case where
the parameters of c and those of the interpolating parabola coincide, i.e., ti = τi , i = 2,3,4, also the second order term
vanishes, and thus the approximation order increases to two. Since in real world applications we usually do not know
the underlying curve c, and much less its parametrization, we thus have to consider Bessel’s method as a first order
method in convex settings with the possibility of influencing the result by choosing an appropriate parametrization.
For example, for chord length parametrization, i.e.,

τ2 = −‖p3 − p2‖2, τ3 = 0, τ4 = ‖p4 − p3‖2, (16)

the tangent (15) becomes

L̄ =
⎛
⎝ 0

(t2
4 + f (t4)

2)f (t2) − (t2
2 + f (t2)

2)f (t4)

−(t2
4 + f (t4)

2)t2 + (t2
2 + f (t2)

2)t4

⎞
⎠ .

The first few terms of L̄’s Taylor expansion thus read:

Degree 0:

−t̄

Degree 1:

Degree 2:

−1

4
f 2

2

(
t2
2 + t2t4 + t2

4

) · t̄ − 1

6
f3t2t4 · n̄

Degree 3:

−1

6
f2f3

(
t3
2 + t2

2 t4 + t2t
2
4 + t3

4

) · t̄ + 1

24

(
2f 3

2 − f4
)
t2t4(t2 + t4) · n̄

Degree 4:

− 1

72

(
2f 2

3 + 3f2f4
) · (t4

2 + t3
2 t4 + t2

2 t2
4 + t2t

3
4 + t4

4

) · t̄

+ 1

120

((
10f 2

2 f3 − f5
)
t2t4

(
t2
2 + t2t4 + t2

4

) + 5f 2
2 f3t

2
2 t2

4

) · n̄

We thus obtain the following corollary to Theorem 4.

Corollary 1. For the situation of Theorem 4 we suppose the interpolating parabola x̄(τ ) to the three points p̄2, p̄3, p̄4
to be parametrised by the chord length method (see (16)).

Independently of the fact whether p̄3 is an inflection point of c (f2 = 0, f3 �= 0) or not (f2 �= 0) it then holds (for
h → 0):

L̄ = O(1) · t̄ + O
(
h2) · n̄.

In the case of chord length parametrization Bessel’s method is thus of approximation order two.

3.1.4. Akima’s method
In the case of Akima’s method, according to (13) and (3), and under the assumptions (9), (10), we obtain the

estimated tangent in its homogeneous line coordinates as

L̄ =
⎛
⎝ 0√

β(t4, t5)τ4f (t2) + √
γ (t1, t2)τ2f (t4)√ √

⎞
⎠ , (17)
− β(t4, t5)τ4t2 − γ (t1, t2)τ2t4
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where

β(t4, t5) = (t4τ5 − t5τ4)
2 + (f (t4)τ5 − f (t5)τ4)

2

(τ5 − τ4)2τ 2
4

,

γ (t1, t2) = (t1τ2 − t2τ1)
2 + (f (t1)τ2 − f (t2)τ1)

2

(τ2 − τ1)2τ 2
2

.

Since analytically β(0,0) = γ (0,0) = 0, β(t4, t5) and γ (t1, t2) are not differentiable in (0,0), and thus no Taylor
expansion exists for L̄ in (t1, t2, t4, t5) = (0,0,0,0). We thus consider a slightly perturbed tangent of the form

L̄num =
⎛
⎝ 0√

β(t4, t5) + ε1τ4f (t2) + √
γ (t1, t2) + ε2τ2f (t4)

−√
β(t4, t5) + ε1τ4t2 − √

γ (t1, t2) + ε2τ2t4

⎞
⎠ , (18)

for small positive values ε1, ε2 ∈ R
+. By calculating the Taylor expansion of L̄num we obtain the following first few

terms.

Degree 1:

δ1,1(t1, t2, t4, t5) · t̄,

where δ1,1(t1, t2, t4, t5) = −(
√

ε1τ4t2 + √
ε2τ2t4).

Degree 2:

δ2,2(t1, t2, t4, t5) · n̄,

where δ2,2(t1, t2, t4, t5) = 1
2f2(

√
ε1τ4t

2
2 + √

ε2τ2t
2
4 ).

Degree 3:

δ3,1(t1, t2, t4, t5) · t̄ + δ3,2(t1, t2, t4, t5) · n̄,

where

δ3,1(t1, t2, t4, t5) = − τ4

2(τ5 − τ4)2√ε1
t2t

2
5 + τ5

(τ5 − τ4)2√ε1
t2t4t5

− τ 2
1

2τ2(τ1 − τ2)2√ε2
t2
2 t4 + τ1

(τ1 − τ2)2√ε2
t1t2t4

− τ2

2(τ2 − τ1)2√ε2
t2
1 t4 − τ 2

5

2τ4(τ5 − τ4)2√ε1
t2t

2
4 ,

δ3,2(t1, t2, t4, t5) = 1

6
f3

(√
ε1τ4t

3
2 + √

ε2τ2t
3
4

)
.

We now consider a sequence of such tangents L̄num for εk → 0, k = 1,2, where limεk→0 L̄num = L̄.
Since for h := max{maxl∈{1,2,4,5} |tl |,maxk∈{1,2} εk} we have for i ∈ {1,2,3}, j ∈ {1,2}:

δi,j (t1, t2, t4, t5, ε1, ε2) =
{

O(hi+ 1
2 ) if i − j � 1,

O(hi− 1
2 ) if i − j > 1,

for h → 0,

we can thus formulate

Theorem 5. Let

c: ȳ(t) =
( 1

t

)

f (t)
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be a sufficiently smooth planar curve in its homogeneous parameter form, where f (0) = f ′(0) = 0, and let t̄ =
(0,0,1)T respectively n̄ = (0,1,0)T denote the tangent respectively the normal of c in ȳ(0) in homogeneous line
coordinates. Let then p̄i = ȳ(ti), i = 1, . . . ,5, be five points on c where t3 = 0, thus p̄3 = ȳ(0), and let L̄num be the
line calculated from these five points according to (18). If p̄3 is not an inflection point of c (f2 �= 0) it then holds (for
h → 0):

L̄num = O
(
h

3
2
) · t̄ + O

(
h

5
2
) · n̄.

If p̄3 is an inflection point of c (f2 = 0, f3 �= 0) then we have (for h → 0):

L̄num = O
(
h

3
2
) · t̄ + O

(
h

7
2
) · n̄.

We thus conclude that Akima’s method is a first order method for convex point configurations, its approximation
order increases to two in an inflection point.

3.1.5. Circle method
In the case of the circle method according to (4) we obtain the estimated tangent in its homogeneous line coordi-

nates as

L̄ =
⎛
⎝ 0

t2
4 f (t2) − t2

2 f (t4) + f (t2)f (t4)
2 − f (t2)

2f (t4)

t2
2 t4 − t2

4 t2 + t4f (t2)
2 − t2f (t4)

2

⎞
⎠ . (19)

The first few terms of its Taylor expansion are calculated to be:

Degree 3: (
t2
2 t4 − t2t

2
4

) · t̄

Degree 4:

Degree 5:

1

4
f2

(
t4
2 t4 − t2t

4
4

) · t̄ + 1

6
f3

(
t3
2 t2

4 − t2
2 t3

4

) · n̄

Degree 6:

1

6
f2f3

(
t5
2 t4 − t2t

5
4

) · t̄ + 1

24

(
f4 − 3f 3

2

)(
t4
2 t2

4 − t2
2 t4

4

) · n̄

Since for h := maxl∈{2,4} |tl | we have

t i2t
j

4 − t
j

2 t i4 = O
(
hi+j

)
for h → 0,

we can thus formulate:

Theorem 6. Let

c : ȳ(t) =
( 1

t

f (t)

)

be a sufficiently smooth planar curve in its homogeneous parameter form, where f (0) = f ′(0) = 0, and let t̄ =
(0,0,1)T respectively n̄ = (0,1,0)T denote the tangent respectively the normal of c in ȳ(0) in homogeneous line
coordinates. Let then p̄i = ȳ(ti), i = 2,3,4, be three points on c where t3 = 0, thus p̄3 = ȳ(0), and let L̄ be the line
(19), obtained as tangent to the interpolating circle to the three points p̄2, p̄3, p̄4.



92 G. Albrecht et al. / Computer Aided Geometric Design 25 (2008) 80–95
Independently of the fact whether p̄3 is an inflection point of c (f2 = 0, f3 �= 0) or not (f2 �= 0) it then holds (for
h → 0):

L̄ = O
(
h3) · t̄ + O

(
h5) · n̄.

The circle method is thus a method of approximation order two whether or not we have a configuration with
inflection points.

3.2. Numerical results

In this section we illustrate the above theoretical results by numerical examples. To this end we consider a given
curve (7) under the assumptions (8)–(10). We choose the sequence

hk = 2−k, k = 0,1,2, . . . ,

and randomly generate7 parameter values ti (hk), i = 1,2,4,5, where ti (hk) → 0 for k → ∞. For each value of k we
then apply the different tangent estimators to the points (ti , f (ti)), thus obtaining the respective estimated tangent in
the point (t3, f (t3)). We then calculate the angle εk = ε(hk) in radians between the calculated tangent and the exact
tangent. Since

hk

hk−1
= 1

2

a method of approximation order n satisfies

εk

εk−1
= O

(
1

2n

)
.

In order to enhance readability of the numerical results we display the dual logarithms of hk and εk , where

log2 hk = −k = log2 hk−1 − 1,

log2 εk ≈ log2 εk−1 − n.

For every example we display the graph of the curve with its exact tangent, a comparative table showing the values
| log2 hk| and | log2 εk| for every method as well as a graphical illustration thereof.

Fig. 6 illustrates the situation for the curve (t, exp(t)− t − 1), where the considered point (0,0) is not an inflection
point. For Bessel’s and Akima’s methods we chose chord length parametrization in this example. The numerical
results confirm the theoretical ones: the approximation order of the conic method is 4, Bessel’s method with chord
length parametrization and the circle based method have approximation order 2, and FMILL and Akima’s methods
have approximation order 1.

Fig. 7 illustrates the situation for the curve (t, t4 + t3), where the considered point (0,0) is an inflection point. For
Bessel’s and Akima’s methods we chose uniform parametrization in this example. The numerical results confirm the
theoretical ones: the approximation order of all the methods is 2.

Fig. 8 illustrates the situation for the curve (t, t2

1+t2 ), where the considered point (0,0) is not an inflection point.
For Bessel’s and Akima’s methods we chose uniform parametrization in this example. The numerical results confirm
the theoretical ones: the approximation order of the conic method is 4, the circle based method has approximation
order 2, and Bessel’s, Akima’s, and FMILL’s methods have approximation order 1.

4. Conclusions

We have presented a method of tangent estimation for planar, convex data which is based on the classical theorem
of Pascal and achieves conic precision. Numerous examples have illustrated a remarkably better performance of the
presented “conic“ method with respect to classical tangent estimation schemes such as FMILL, Bessel, Akima’s, and
the circle based method.

7 For example, by taking ti (hk) = ∑d γij h
j
/j ! with randomly chosen coefficients γij and d � 1.
j=1 k
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Fig. 6. Comparison of the tangent estimators for points taken from the curve (t, exp(t) − t − 1). The values of | log2(ε)| for the different methods
are shown in the table and partially illustrated in the graph.

Fig. 7. Comparison of the tangent estimators for points taken from the curve (t, t4 + t3). The values of | log2(ε)| for the different methods are
shown in the table and illustrated in the graph.



94 G. Albrecht et al. / Computer Aided Geometric Design 25 (2008) 80–95
Fig. 8. Comparison of the tangent estimators for points taken from the curve (t, t2

1+t2 ). The values of | log2(ε)| for the different methods are shown

in the table and partially illustrated in the graph.

A thorough theoretical study has substantiated the results found experimentally: in convex settings the presented
conic based method has proven to be of approximation order four whereas the circle based one has shown to be of
approximation order two, and FMILL’s, Bessel’s, and Akima’s methods in general have approximation order one. In
inflection points all methods have approximation order two.

In different settings, Schaback (1993), Liming (1944), and Pavlidis (1983) have presented similar methods for
constructing tangents with conic precision, but neither comparisons to other existing methods nor a theoretical study
of the tangent estimators approximation order has been given. The presented study thus gives a theoretical justification
for using a conic based tangent estimator as well as an efficient and easy to implement scheme for obtaining tangent
estimates in planar, convex data points.
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