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Abstract 

We describe a method for constructing rational quadratic patch boundary curves for scattered 
data in B3. The method has quadric boundary precision; if the given point and normal data are 
extracted from a quadric, then the boundary curves will lie on this quad&. Each boundary curve 

is a conic section represented in the rational BCzier representation. 
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1. Introduction 

Generating boundary curves is often the first step in constructing a scattered data 
interpolant with respect to triangulated data in R3. Here a boundary curve scheme is 
described which has quadric boundary precision; if the given data comes from one 
quadric Q, then the boundary curves will lie on Q. 

In the construction of the boundary curves, it is assumed that the following information 
is available. 
l Data points pi E lR3. 
l A normal ni E R3 at each pi. 
l A triangulation ’ 7 of the pi (cf. Choi et al. ( 1988) ) . 
Each boundary curve interpolates to the point and normal information. A conic is con- 
structed between each pair of pi and pj which are joined by an edge in the triangulation. 

In (Hansford, 1991)) this boundary curve scheme is incorporated into a G’ scattered 
data interpolant. 

* Corresponding author. 
t The discussion will be limited to triangulated data, however it is straightforward to modify the algorithm 
to data in a quadrilateral structure. 
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One of the basic building blocks of quadrics are tonics; any planar intersection of a 
quadric is a conic. Therefore, tonics are used as the building blocks for this boundary 
curve scheme which has quadric boundary precision. Each boundary curve is a conic 
represented as a rational quadratic Btzier curve. 

The first section presents the basic tools and notation used in the boundary curve 
scheme. The presentation of the boundary curve scheme in the second section proceeds 
in the following manner. First, the scheme is developed for data which comes from 
one irreducible quadric. Second, the scheme is developed for data which is not from 
a quadric. Possible degeneracies are described in the succeeding subsection. In the last 
section, there is a discussion of the boundary curves used in the context of a rational 

G’ interpolant. Additionally, remarks and open problems are presented. 

2. Preliminaries 

2.1. Rational quadratic Bkzier curves on conies 

A quadratic rational Bezier curve x(t) is given by 

(1) 

The bi are the Bkzier control points and the wi are referred to as weights. The Bf are 
the familiar quadratic Bernstein basis functions. 

Every rational quadratic BCzier curve defines a conic, cf. (Farin, 1992; Faux and 
Pratt, 1979; Lee, 1987). A conic is determined by five coplanar pieces of information. 
The shape (or graph) of a rational quadratic Btzier curve is also determined by five 

pieces of information: two points with tangents and a ratio k = 4wT/wuw~ (cf. (Lee, 
1987)). 

By considering p*-’ Wi, p E lR - (0) as the weights of x(t) in ( 1)) we have a way 

to change the weights but not change the graph of the curve. This process of changing 
the parameter value associated with each point on the curve is called reparametrization. 
One of the most common utilizations of reparametrization arises when the end weights 
( wo and ~2) are set to unity. If this is perfotmed, the curve is in standard form.’ In 
the context of a standardized curve (with positive weights), the choice of p = -1 is 
of special interest. This reparametrization will allow the complementary segment to be 
traced as the parameter t E [ 0, 1 ] . The complementary segment is the portion of the 
conic which does not lie within the convex hull of the control polygon. 

2.1.1. A problem 
A commonly occurring problem is the following. Given two points and corresponding 

tangents and another point, find the interpolating conic. It is important to remember 
that the information given in this problem is sufficient to determine the shape of the 

2 It is not always possible to represent a conic in standard form. 
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conic, it is not enough information to determine the parametrization of the rational 
formulation of the conic. Following the work of Farin ( 1992) and Lee ( 1987), we 
choose t = l/2 as the parameter value to be assigned to the given (additional) point. 
The Bezier polygon is formed by the given point and tangent information. With this 

assumption, the relationship between the barycentric coordinates ri of the given point 
with respect to the polygon and weights Wi is 

w(J : Wl : w2 = 5-o : $1 : 72. (2) 

If the curve is standardized, our given point will no longer be associated with the 

parameter value t = l/2. 
If 0 < 70, rt ,72 < 1 then determining wt in (2) with standardization is not a problem. 

There are special sets of ri that must be handled differently. There are three cases. When 
rt = 1, the conic consists of two intersecting lines. When 70 = 0 or 72 = 0, the conic 

consists of two parallel lines. When ra = 1 or 72 = 1, the conic consists of two parallel 
lines. 

2.2. Quadric su@aces 

Quadrics are surfaces that are quadratic in three variables, 

ax2+by2+cz2+dxy+exz+fyz+gx+hy+iz+j=0. (3) 

Apparent from (3), a quadric is determined by nine scalar-valued coefficients. This 
means that one can specify nine points in E3 that are in general position, and an 
irreducible quadric can be found that will pass through these points. For the points 
to be in general position: no seven are coplanar, no six lie on one conic, no four 
are collinear, and no two are coincident. There are nine irreducible quadrics. We will 
disregard all other quadrics. 

Any tangent plane of a quadric meets the quadric in a pair of lines, all together 

forming two families of so-called generatrices. 
l If both families are real and different, the quadric is said to be doubly ruled or annular 

and is a hyperboloid of one sheet or a hyperbolic paraboloid. 
l If both families are non-real but different, the quadric is said to be non-ruled or oval 

and is an ellipsoid, a hyperboloid of two sheets, or an elliptic paraboloid. 
l In the special case, where both families coincide to one family, the quadric is said 

to be singly ruled or degenerate and is a quadratic cone or an elliptic, parabolic or 
hyperbolic cylinder. Note that any tangent plane of a singly ruled quadric touches the 
surface along a whole generatrix. 

3. Boundary curve method 

3.1. Boundary curves for data from a quadric 

This boundary curve scheme was developed with the intent to have quadric boundary 
precision. Therefore, we choose to first present the scheme for data from a quadric, so 
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that the rationale of each step may be developed. However; the scheme does not use 
knowledge of the surface from which the data was taken. 

The boundary curves generated by this scheme are tonics represented as rational 
quadratic BCzier curves. There are three fundamental steps to this boundary curve 
scheme. First, the plane in which a boundary curve lies is determined. This plane 
is referred to as the boundary plane. Second, the middle Btzier point, bi of the rational 

quadratic polygon is constructed. Third, weights are assigned to each BCzier point. 
The next subsections describe these steps. Only one edge in the triangulation is 

discussed, as all edges are treated similarly. 

3.1.1. The boundary plane 

Two points, pu and p, with normals, 1t0 and Ott, (or equivalently, tangent planes) 
are the given information. There are an infinite number of tonics which lie on Q and 
pass through p. and p,. Each of these tonics lies in a plane that passes through p. 
and pl. Therefore, by choosing one of these planes, the shape of the boundary curve is 
determined. It is important that the plane chosen is does not depend upon the ordering or 
indexing of the data points. In other words, the same boundary plane with respect to an 

edge in the triangulation should be produced irrespective of which triangle is currently 
under consideration. 

Two planes are apparent. The plane formed by po, no and pl, and the plane formed by 
p,, nl and po. Thus the method proposed for choosing a boundary plane is to “average” 
these planes. This is done by first constructing a point 

B= $(Po+P1) +(no+m). (4) 

Then, the three points po, f~, and p, define the desired boundary plane. The same scheme 

was used by Piper ( 1987) and Hamann et al. ( 1991). If a different choice of boundary 
plane is used then quadric boundary precision will still be obtained. 3 Clearly, degenerate 
cases can occur in this definition of the boundary plane. These are discussed in Section 

3.3. 

3.1.2. The rational quadratic polygon and weights 

As illustrated in Fig. 1, at this point we have two points (p. and p1 ) with tangent 
planes (To and TI), and a boundary plane B. The intersection of B and Q is a conic. 
The first step in representing this conic in rational quadratic BCzier form, c(t), is to 
determine the polygon: bo, bl and bz. The endpoints pose no problem; simply set 
b. = p. and b2 = pl. (The order here is unimportant since the Bernstein basis functions 
are symmetric.) The middle BCzier point, bl, is simply the intersection of the three 

planes TO, TI and B. 
Given the polygon, the next step is to determine the weights which define the conic, 

c(t) , which lies on Q in B. As discussed in Section 2.1.1, it is a straight forward process 
to determine the weights if we are given another point, s, on the conic. 

3 The above method localizes the determination of the boundary plane. Other, less local, schemes are con- 

ceivable, although they are likely to be more expensive. 
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Fig. 1. Two points and tangent planes (To and Tl) on a quadric, and the boundary plane B. The boundary 
plane intersects the quadric in a conic section, which as shown can be represented as a rational quadratic 
BCzier curve. 

The key to finding a point s on c is the slicing conic. To determine a slicing conic 
Z(t) on Q, we first choose three (given) data points, labeled p,,pi, , pi,. At two of 
these points, say pi0 and pi,, the tangent planes (T, and Ti,) are needed. The term 
slicing conic comes from the fact that we “slice” Q with the plane S formed by the 
three points, creating a conic in this “slicing plane. Following Fig. 2, the construction 
of such a slicing conic includes the following steps. 

1. Find the point of intersection of T,, Ti, and S; This point is 61 of the rational 
quadratic representation Z(t) of the slicing conic. Additionally, let &J = p, and 

82 = pi,. 
2. Since pi2 is on the slicing conic, it can be used to determine the weights of Z(t). 

(The curve is then standardized.) Notice that pi, lies on the complementary seg- 
ment, causing tii < 0. By simply negating the weight we obtain a parametrization 
of the portion of the curve within the polygon, $0, 81, and 62. 

Recall that the slicing conic 2(t) is defined for the purpose of determining a point 
s = c( l/2) on the boundary curve. The point s is realized by constructing 2 such that 
it intersects the boundary plane B. 

A plane and a conic either have no intersections, two (coincident or distinct) inter- 
sections, or an infinite number of intersections. Our interest focuses on slicing tonics 
with two distinct intersections with B. Because our data comes from a quadric, we know 
that if 2 intersects B, then 2 also intersects c there. By choosing p. or p1 as p,, then in 
most instances a point s may be found (that is different from p. or p, ) . If, for instance, 
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Fig. 2. The construction of a slicing conic and the boundary conic. 

the intersections are identically p. and p, then another slicing conic must be constructed 
by using a different combination of three points. (Other degenerate cases are discussed 
in Section 3.3.) By always including p. or pl, we are assured at least one intersection 
of 2 with c. 

With s in hand, we may complete the construction of the boundary curve by assigning 

appropriate weights (cf. Section 2.1.1) . If the point s on c lies outside the convex hull of 
the polygon, then the weight wt must be negated. Thus, the definition of the boundary 
curve which lies on Q and interpolates the given point and normal information is 
complete. 

3.1.3. Examples 
Examples of boundary curves on quadrics are given in Figs. 3-5. One of each quadric 

type (oval, doubly ruled, singly ruled) is represented. In addition, each conic type 
appears, including lines as a degenerate conic. The boundary curves are illustrated in 
the top left of each figure. In some cases, the underlying triangulation is also rendered. 
In the bottom right of each figure is a Gouraud shaded image of the rational quadratic 
triangular patches (cf. (de Boor, 1987; Farin, 1986)) formed by the boundary curves. 

In each of these figures, the shaded image is hardly distinguishable from the quadric 
from which the given data was taken. This point is demonstrated further in Fig. 6, with 
a reflection line analysis of patches on a quadric. However, in general, the patches will 
be only Co. Furthermore, in general, a rational quadratic triangular patch does not lie on 
a quadric. The parametric representation of quadrics with rational quadratic triangular 
patches, from a geometric point of view, is presented in (Boehm and Hansford, 1991) 
and (Boehm and Hansford, 1992). An algebraic condition can be found in (Sederberg 
and Anderson, 1985). In general, rational quartics are necessary, as is shown in (Farin 
et al., 1988). 

3.2. Boundary curves for data from a general surface 

If the given data are taken from a general surface type rather than a quadric, then 
additional precautions must be taken. Importantly, it is not necessary to know a priori 
the type of surface from which the data has been extracted. Other than the points raised 
below, the construction is identical to that described in Section 3.1. 
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Fig. 3. Boundary curves on an ellipsoid. 

The types of degenerate cases that arise is the first way in which the boundary curve 
scheme behaves differently for data from a general surface S. Particular degeneracies 
can occur for general data that cannot occur with data from a quadric. Details on the 
degeneracies are given Section 3.3. It is possible to distinguish between the cases that 

can and cannot occur for data from a quadric. With this knowledge, each degenerate 
case can be handled appropriately. 

The second way in which the boundary curve scheme behaves differently for data 
from S is the non-uniqueness of the boundary curve generated over an edge. The choice 
of slicing conic determines the shape of the boundary curve. For a quadric, the boundary 
curve is unique once the boundary plane has been constructed, thus all slicing tonics 
yield the same boundary curve. Therefore, if the scheme is executed triangle by triangle 
for data from S, then an edge could have two boundary curves associated with it. (Of 
course these tonics lie in the same plane and share the same polygon - only the middle 
weight differs.) Which conic is the best? One choice would be the conic with a weight 
closest to the weight for the minimum eccentricity conic, cf. (Pratt, 1985; Farin, 1992). 
In the case of a tie, the smallest weight is preferable: ellipses are generally nicer in 
shape than hyperbolas. 

Illustrated in Fig. 7 is an example of the boundary curve scheme applied to data from 
a general surface type. Again, the rational quadratic triangular patches formed by the 
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Fig. 4. Boundary curves on a hyperbolic paraboloid. 

boundary curves are illustrated. 

3.3. Degeneracies 

Clearly, an algorithm composed of steps such as intersecting three planes to yield a 
point, will have “degenerate” cases -instances when special action is needed in order 
to determine a solution. It is of primary interest to handle all cases such that if the data 
are from a quadric, then the quadric is reproduced. As presented in the introduction of 
this section, the three fundamental steps in the scheme include generating a boundary 
plane, finding a polygon, and then assigning weights to the Btzier points. Degenerate 
cases occur in each of these steps, as detailed in the subsections below. 

3.3.1. Degenerate boundary plane 
Degeneracies in the boundary plane generation occur when # from (4) becomes 

collinear with pO and pl. Among these degeneracies, the case when no = -nl is of 
special interest. This could happen for arbitrary data, but this could also occur on a 
quadric, e.g., take the points from the north and south poles of a sphere. We choose to 
disallow this for boundary curves with quadric boundary precision. 
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Fig. 5. Boundary curves on a circular cylinder. 

3.3.2. Degenerate polygon 

The tangents are constructed by intersecting the tangent planes with the boundary 
plane. It is possible to have tangent information which dictates that a curve with an 
inflection point is expedient - an impossible task for a rational quadratic. Also posing a 
problem are tangents that are nearly parallel. 

An algorithm has to be developed that decides if a given polygon will generate a curve 

with or without an inflection point, and the shape of the curve. While the development 
of such an algorithm is interesting in its own right, it is not discussed here. If an 
inflection point is called for, an algorithm for constructing two quadratics is described 
in (Hansford, 199 1) 

A special (degenerate) case can occur for data from a quadric. Recall that the 
boundary plane B and two tangent planes, To and T1, are intersected to find the middle 
Bezier point bt. If TO and T1 intersect in a line which lies in B, there are an infinite 
number of choices for bt. As illustrated in Fig. 8, it is sufficient to place bt at the 
midpoint of ba and b2 and to assign weights of unity to each point-creating a straight 
line. As in Fig. 8 (top), identical tangent planes imply that the two points lie on the 
same generator and that the reguli are coincident, hence the quadric is singly ruled. As 
in Fig. 8 (bottom), either data point lies on a tangent line at the other point: This counts 
as three collinear points on the quadric, hence the quadric is doubly ruled. 
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Fig. 6. Reflection Iines of quadratic patches on a hyperbolic paraboloid. 

3.3.3. Degenerate weights 
Given the quadratic polygon and another point on the underlying conic, it was shown 

in Section 2.1.1 how to determine the weights which yield a rational quadratic repre- 
sentation of the conic. When the given data are not from a quadric, weights arise from 
this process that are not useful. Before describing how to overcome such a problem, we 
will show that these cases cannot occur for data from a quadric. 

Let bo, bl , bz be the non-collinear control points of the Btzier polygon with associated 
weights ( wg, WI, ~2). To find weights, (2) is used; the weights obtained in the following 
degenerate cases do not allow standardization. The additional point on the conic is 
referred to as e. The first degenerate set of weights is (wo,O, ~2). The location of e 
is collinear with bo and by. Suppose the data are from a quadric. For e to be collinear 
with bo and b2 means that this line is a generator. A contradiction arises immediately: 
bl must be collinear with bo and b2. Three other similar cases occur when e is either 
collinear with bobI or bl b2, or e is identical to bl. None of these cases can occur on 
a quadric, given the boundary plane generation scheme described in Section 3.1.1; the 
plane lies halfway between the normals to the surface. 

Therefore, if any of the cases of degenerate weights occur, we know that the data are 
not from a quadric and thus we have some freedom in our solution. We choose to use 
the minimum eccentricity weight that is implied by the polygon. Before resorting to this 
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Fig. 7. Boundary curves on a monkey’s saddle 

solution, other slicing tonics can be constructed that might produce a more satisfactory 
point. However, after all locally constructed slicing tonics are exhausted, the minimum 
eccentricity weight should be used. 

3.3.4. Degenerate slicing conic 

In the construction of a slicing conic, degeneracies can occur when the polygon or 
the weights are generated. 

For the polygon degeneracy, it might be that the tangent planes to the surface intersect 
in a line which is parallel to the slicing plane. Unfortunately, we are unable to deduce the 
correct location of the middle slicing conic Btzier point, and a new slicing conic must 
be formed. Notice: if the data are from a general surface S, then by merely changing 
at which points the tangent planes are given will in general produce a different slicing 
conic. 

For the weight degeneracies, we cannot exclude degenerate cases from happening for 
data from a quadric, as we did for the boundary conic. This is because the slicing plane 
is not restricted in its location as is the boundary plane. Degenerate tonics, lines, must 
be constructed. Instead of intersecting a slicing conic with the boundary plane, one or 
two lines are intersected with the boundary plane. 
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Fig. 8. Left, the intersection of the tangent planes and boundary plane is a line. Right, the type of quadrics 

on which this can happen. Top: singly ruled. Bottom: doubly ruled. 

4. Remarks 

In (Hansford, 1991), this boundary curve scheme is incorporated into a G’ scattered 
data interpolant. A rational extension of the G’ polynomial scheme in (Piper, 1987) and 
(Farin, 1992) is developed. (This scheme uses the Clough-Tocher split.) The patches 
are constructed to be G’ in R4 which ensures G’ in lR3. This is a more stringent 
condition than that presented in (Vinacua and Brunet, 1989), which allows the patches 
to be C-’ in R4. Our rational G’ scheme occasionally suffered from shape defects, 
similar to those discussed in (Mann et al., 1992). It remains an open research question 
to find polynomial or rational G’ conditions (which are practical to use) that produce 
surfaces that are free from shape defects. 

In principle, the boundary curves presented can be incorporated into any triangular or 
rectangular scheme. It is not necessary to use them in the so-called split-domain schemes. 
The boundary curves should simply be degree elevated as necessary. The shape of the 
boundary curves are quite nice, and seem to satisfy the suggestion of Mann et al. ( 1992) 
that the boundary curves should not have flat regions toward the middle. It should be 
noted that this boundary curve scheme is geared toward data that are monotonic- or 
quadric like. 

Another open question is to determine if a given rational quartic patch actually lies 
on a quadric. If the quadric is known, this question has been answered in the work by 
Hoschek (1992) and Dietz et al. (1993). 
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