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Affine Maps in 3D

*‘i\K

Affine maps in 3D: fighter jets twisting and turning through 3D space.

¥
X

This chapters wraps up the basic geometry tools. Affine maps
in 3D are a primary tool for modeling and computer graphics.
Figure 1.1 illustrates the use of various affine maps. This chap-
ter goes a little farther than just affine maps by introducing
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Sketch 1.
An affin

Sketch 2.
Affine maps leave ratios invari-

Sketch 3.
The centroid is mapped to the
centroid.

projective maps — the maps used to create realistic 3D images.

1.1 Affine Maps

Linear maps relate vectors to vectors. Affine maps relate points
to points. A 3D affine map is written just as a 2D one, namely
as

x'=p+ A(x — o). (1.1)

In general we will assume that the origin of x’s coordinate sys-
tem has three zero coordinates, and drop the o term:

x' =p + Ax. (1.2)

Sketch 1.1 gives an example. Recall, the column vectors of A
are the vectors aj,as,as. The point p tells us where to move
the origin of the [e1, e, e3]-system; again, the real action of an
affine map is captured by the matrix. Thus by studying matrix
actions, or linear maps, we will learn more about affine maps.

We now list some of the important properties of 3D affine
maps. They are straightforward generalizations of the 2D cases,
and so we just give a brief listing.

1. Affine maps leave ratios invariant (see Sketch 1).

2. Affine maps take parallel planes to parallel planes (see Figure
1.2).

3. Affine maps take intersecting planes to intersecting planes.
In particular, the intersection line of the mapped planes is
the map of the original intersection line.

4. Affine maps leave barycentric combinations invariant. If
X = c1p1 + C2P2 + €3P3 + 4Py,
where ¢ + ¢o 4+ c3 + ¢4 = 1, then after an affine map we have
x' = c1p) + caph + €35 + Capy-

For example, the centroid of a tetrahedron will be mapped
to the centroid of the mapped tetrahedron (see Sketch 4).
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A\

Figure 1.2.
Parallel planes get mapped to parallel planes via an affine map.

Most 3D maps do not offer much over their 2D counterparts
— but some do. We will go through all of them in detail now.

1.2 Translations

A translation is simply (1.2) with A = I, the 3 x 3 identity
matrix:

1 00
I=10 1 0],
0 01
that is

x' =p+Ix

Thus the new [a;,as,a3]—system has its coordinate axes par-
allel to the [e1, ez, e3]-system. The term Ix = x needs to be
interpreted as a vector in the [e1, €2, eg]-system for this to make
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sense! Figure 1.3 shows an example of repeated 3D translations.

Figure 1.3.
Translations in 3D: three translated teapots.

Just as in 2D, a translation is a rigid body motion. The
volume of an object is not changed.

1.3 Mapping Tetrahedra

A 3D affine map is determined by four point pairs p; — p} for
¢t =1,2,3,4. In other words, an affine map is determined by a
tetrahedron and its image. What is the image of an arbitrary
point x under this affine map?

Affine maps leave barycentric combinations unchanged. This
will be the key to finding x’, the image of x. If we can write x
in the form

X = u1p1 + u2p2 + u3P3 + u4P4, (1.3)
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then we know that the image has the same relationship with
the p!:

x' = u1p] + u2ph + uzps + uspl. (1.4)

So all we need to do is find the u;! These are called the barycen-
tric coordinates of x with respect to the p;, quite in analogy to
the triangle case (Section 77).

We observe that (1.3) is short for three individual coordinate
equations. Together with the barycentric combination condi-
tion

ur +uo +ug+ug =1,

we have four equations for the four unknowns w1, ... ,u4, which
we can solve by consulting Chapter 77.

EXAMPLE 1.1

Let the original tetrahedron be given by the four points p;

0 1 0 0
ol, lo|l, |1], o
0 0 0 1

Let’s assume we want to map this tetrahedron to the four points
!

p;

0 -1 0 0
0f, 0, -1], 0
0 0 0 -1
This is a pretty straightforward map if you consult Sketch 1.3.
1
Let’s see where the point x = |1| ends up! First, we find
1
1 0 1 0 0
1l =-210] +]0| + 1|+ |O],
1 0 0 0 1

i.e., the barycentric coordinates of x with respect to the orig-
inal p; are (—2,1,1,1). Note how they sum to one! Now it is

Sketch 4.
An example tetrahedron map.
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Sketch 5.
The relationship between tetra-
hedra.

simple to compute the image of x; compute x' using the same
barycentric coordinates with respect to the p:

0 -1 0 0 -1
xX==200[+]0|+|-1]|+]|0]|=[-1
0 0 0 -1 -1

L 4

A different approach would be to find the 3 x 3 matrix A and
point p which describe the affine map. Construct a coordinate
system from the p; tetrahedron. One way to do this is to choose
p1 as the origin' and the three axes are defined as p; — p; for
i = 2,3,4. The coordinate system of the p/ tetrahedron must
be based on the same indices. Once we have defined A and p
then we will be able to map x by this map:

x' = Alx — p1] + p}

Thus the point p = p}. In order to determine A, let’s write
down some known relationships. Referring to Sketch 1.3, we
know

Alp2 — p1] = p5 — P},
Alps — p1] = P — Pl
Alps — p1] = Py — i,
which may be written matrix form as
1 o 1

A[Pz—Pl P3 —P1 P4—P1]=[P'2—P'1 Ps —P1 P4(_P:;]-
1.5

Thus

A=[py—p, Ph—p, Pi—-P][P2—P1 Ps—p1 Pi—p1] .

(1.6)
and A is defined.

LAny of the four p; would do, so for the sake of concreteness, we pick
the first one.
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EXAMPLE 1.2

Revisiting the previous example, we now want to construct
the matrix A. By selecting p; as the origin for the p; tetrahe-
dron coordinate system there is no translation; p; is the origin
in the [e1, ez, e3]-system and pj = p1. We now compute A. (A
is the product matrix in the bottom right position):

1 0
0 0
0 1

-1 0 O 1 -1
xX=[0 -1 0 1l =|-1
0 0 -1 1 -1

This is the same result as in the previous example.

L 4

1.4 Projections

Take any object made of wires outside; let the sun shine on
it, and you can observe a shadow. This shadow is the parallel
projection of your object onto a plane. Everything we draw is
a projection of necessity — paper is 2D, after all, whereas most
interesting objects are 3D. Figure 1.4 gives an example. Also
see Figure 77.

Projections reduce dimensionality; as basic linear maps, we
encountered them in Sections ?? and ??7. As affine maps, they
map 3D points onto a plane. In most cases, we are interested
in the case of these planes being the coordinate planes. All we
have to do then is set one of the point’s coordinates to zero.
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Sketch 6.
Projecting a point on a plane.

Figure 1.4.
Projections: a parallel projection of a 3D barn.

These basic projections are called orthographic: the simulated
light ray hits the projection plane at a right angle.

It is a little more interesting to use directions which are
at arbitrary angles to the projection plane. These are called
oblique projections. Let x be the 3D point to be projected, let
n - [q — x| = 0 be the projection plane, and let v indicate the
projection direction (see Sketch 1.4).

We have already encountered this problem in Section ?7?
where it is called line/plane intersection. There, we established
that x', the image of x under the projection is given by (?7?),
which we repeat here:

la=xl-n (1.7)

v-n

x =x+

Figure 1.5 illustrates a simple oblique projection of a cube de-
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fined over [—1,1] in each coordinate with

1 2 1/v2
n= |0 q= 1|0 v=|1/V2]|.
0 0 0

Figure 1.6 creates a projection plane that is not one of the
coordinate planes; specifically,

1/V3 4 1/V3
n=[1/V3| q=[0| v=|1/V3].
1/V3 0 1/V3

Finally, Figure 1.7 creates a general oblique projection with

1/vV3 4 1/v2
n=|1/V3| q=|0 v=[1/v2]|.
1/V3 0 0

Revisiting the helix, Figure 1.8 is a projection with the same n
and v as in the previous figure.
How do we write this as an affine map? Without much effort,

we find
, n-x q-n
X =X——V+ ——vV.
v-n v-n

We know that we may write dot products in matrix form (see

Section ?7):
, nTx q-n
X =X———V+——V.
v-n v-.n

Next, we observe that

T

m? - xjv = v[nTx].

Since matrix multiplication is associative (see Section ?7), we

also have

T

v[nTx] = [vnT]

X,

and thus

X =1 - e L2y (1.8)
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Figure 1.5.

Projections: a cube projected in a coordinate plane with an oblique angle.

This is of the form x’ = Ax + p and hence is an affine map!?
The term vnT might appear odd, yet it is well-defined. It is
a 3 X 3 matrix, as in the following example.

EXAMPLE 1.3

All rows of this matrix are multiples of each other; so are

2Technically we should add the origin in order for p to be a point.
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Figure 1.6.
Projections: a cube projected in an arbitrary plane with a right angle.

all columns. Matrices which are generated like this are called
dyadic; their rank is one.

EXAMPLE 14

Let a plane be given by ;1 + 22 + 3 — 1 = 0, a point x and
a direction v by

3 0
x= |2, v=1[0
4 -1

If we project x along v onto the plane, what is x'? First, we
need the plane’s normalized normal. Calling it n, we have

1
1
1

Sl
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Figure 1.7.
Projections: a cube projected in an arbitrary plane with an oblique angle.

1
Now choose a point q in the plane. Let’s choose q = [0] for

0
simplicity. Now we are ready to calculate the quantities in (1.8):

v-n=—1/V3,

VIIT

1/V3

| 111
010 0 0
010 0 0°
-1 -1 -1 -1
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Figure 1.8.
Projections: a helix projected in an arbitrary plane with an oblique angle.

Putting all the pieces together:

0 0 0773 TJo 3
X=[I-|0 0 o0f]|2]+]|0]=]2
~1 -1 -1] |4 1 —4

Just to double check, enter x" into the plane equation
3+3-4-1=0,

and we see that

3 3 0
20=(2 [ +810],
4 —4 1

which together verify that this is the correct point.
Sketch 1.4 should convince you that this is indeed the correct
answer.

Sketch 7.
A projection example.
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L 4

Which of the two possibilities, (1.7) or the affine map (1.8)
should you use? Clearly (1.7) is more straightforward and less
involved. Yet in some computer graphics or CAD system en-
vironments, it may be desirable to have all maps in a unified
format, i.e., Ax + p.

1.5 Homogeneous Coordinates and Perspective Maps

There is a way to condense the form x' = Ax + p of an affine
map into just one matrix multiplication

x = Mx. (1.9)
This is achieved by setting

a11 @12 413 pP1
a a a
M= 2,1 2,2 2,3 P2
azl1 a32 0433 P3
0 0 0 1

and
x1 x
!
./1:2 12 .’Ez
X = ) A= i
1 1

The 4D point x is called the homogeneous form of the affine
point x. You should verify for yourself that (1.9) is indeed the
same affine map as before!

The homogeneous form is more general than just adding a
fourth coordinate x4 = 1 to a point. If, perhaps as the result of
some computation, the fourth coordinate does not equal one,
one gets from the homogeneous point x to its affine counterpart
x by dividing through by x4. Thus one affine point has infinitely
many homogeneous representations!

EXAMPLE 1.5
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(The symbol = should be read “corresponds t0”.)

. 10 —2

. ~10| _ |2
S| T80T |-
10 ~2

This example shows two homogeneous representations of one

affine point.

Using the homogeneous matrix form of (1.9), the matrix M
for the point into a plane projection from (1.8) becomes

[v-n 0 0 ]

0 v.n 0 |[|—vnT|(q-n)v
| O 0 v-nj

0 0 0 v-n

Here, the element m44 = v -n. Thus 4, = v-n, and we
will have to divide x’s coordinates by x4 in order to obtain the
corresponding affine point.

A simple change in our equations will lead us from parallel
projections onto a plane to perspective projections. Instead of
using a constant direction v for all projections, now the direc-
tion depends on the point x. More precisely, let it be the line
from x to the origin of our coordinate system. Then, as shown
in Sketch 1.5, v = —x, and (1.7) becomes

/ [q - X] ‘n

X =X+ ——X,
X-n

which quickly simplifies to
x == —x. (1.10)
In homogeneous form, this is described by the following matrix

| {la-n] 0
M: =5 0 O0|x-n|

Sketch 8.
Perspective projection.
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Perspective projections are not affine maps anymore! To see
this, a simple example will suffice.

EXAMPLE 1.6
0
Take the plane z3 = 1; let q = |0| be a point on the plane.
1
Now q-n =1 and x - n = z3, resulting in the map
x' = ix.
T3
Take the three points
2 3 4
X1 = 07 X9 = -1 ; X3 = -2
4 3 2

This example is illustrated in Sketch 1.5. Note that xo = %xl +
%x:;, i.e., X9 is the midpoint of x; and xs.
Their images are

1/2 2
xp=101], xb=|-1/3], x}=]-1
1 1 1

The perspective map destroyed the midpoint relation! For now

1 2. 1./
Xy = 3% T 3%3.

Thus the ratio of three points is changed by perspective maps.
As a consequence, two parallel lines will not be mapped to par-
allel lines. Because of this effect, perspective maps are a good
model for how we perceive 3D space around us. Parallel lines
do seemingly intersect in a distance, and are thus not perceived
as being parallel! Figure 1.9 is a parallel projection and Figure
1.10 illustrates the same geometry with a perspective projec-
tion. Notice in the perspective image, the sides of the bounding
cube that move into the page are no longer parallel.
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Figure 1.9.

Parallel projection: A 3D helix and two orthographic projections on the left
and bottom walls of the bounding cube — not visible due to the orthographic
projection used for the whole scene.

The study of perspective goes back to the fourteenth century
— before that, artists simply could not draw realistic 3D images.
One of the foremost researchers in the area of perspective maps
was A. Diirer; see Figure 1.11 for one of his experiments.?

1.6 Exercises

We’ll use four points

1 0 0 0
x1= 1|0, x=|1|, x3=|10], x4=10
0 0 —1 1

3From The Complete Woodcuts of Albrecht Diirer, edited by W. Durth,
Dover Publications Inc., New York, 1963. A website with material on
Diirer: http://www.bilkent.edu.tr/wm/paint/auth/durer/.
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Figure 1.10.

Perspective projection: A 3D helix and two orthographic projections on the
left and bottom walls of the bounding cube — visible due to the perspective
projection used for the whole scene.

and four points

-1 0 0 0
y1 = 0 y Y2 = -1 y Y3 = 0 y Y4 = 0 )
0 0 -1 1

and also the plane through q with normal n:

1 1 3
q= |0f, n:g 0
0 4

1. Using a direction



1.6 Exercises

19

Figure 1.11.
Perspective maps: an experiment by A. Direr.

what are the images of the x; when projected onto the plane
with this direction?

2. Using the same v as in the previous problem, what are the
images of the y;?

3. What are the images of the x; when projected onto the plane
by a perspective projection through the origin?

4. What are the images of the y; when projected onto the plane
by a perspective projection through the origin?

5. Compute the centroid c of the x; and then the centroid ¢’ of
their perspective images (previous Exercise). Is ¢’ the image
of ¢ under the perspective map?

6. An affine map x; — y;;¢ = 1,2,3,4 is uniquely defined.
What is it?
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7. What is the image of
1
p= |1
1
under the map from the previous problem? Use two ways to

compute it.

8. What are the geometric properties of the affine map from
the last two problems?

9. We claimed that (1.8) reduces to (1.10). This necessitates
that

Show that this is indeed true.



